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C
arbon nanotubes have an unprece-
dented combination of mechanical,
electrical, thermal, and electronic

properties that make them available for
applications ranging from structures to
devices to sensors to name but a few.
However, despite decades of research, the
synthesis of carbon nanotubes (CNTs) is not
sufficiently well-controlled to fulfill their
promise. The lack of control persists despite
attempts at empirical optimization and
thus leads us to focus on extending the
fundamental understanding of CNT growth.
An important barrier to our fundamental
understanding is the very large expanse of
experimental parameters that define a
chemical vapor deposition (CVD) growth
experiment (such as temperature, gas flow
rates, compositions, concentrations, etc.).
The slow rate at which growth experiments
are conducted (∼1 per day) combines with
the large experimental parameter space to
overwhelm our ability to explore it, thereby
impeding the progress of understanding
and improving growth. To this end, we have
developed the first system to automate the

exploration of parameter space for carbon
nanotube growth, which we use to under-
stand and control selective growth of single-
wall and multiwall carbon nanotubes.
The evolution of carbon nanotubes dates

back to carbon nanofibers (CNFs), which
were first grown by CVD as far back as
1952,1 followed by broader acceptance of
the CVD technique for the synthesis of CNFs
and what was later recognized as multiwall
nanotubes (MWNTs) in the 1970s.2�4 Single-
wall carbon nanotubes (SWNTs), found in
the products of carbon arc discharge by
Iijima5 and Bethune,6 turned out to bemore
difficult to produce by CVD, even though
they probably existed in Endo's CVD pro-
ducts.4 Dai et al.7 were the first to demon-
strate SWNT growth from carbon monoxide
in 1996, quickly followed by SWNT synthe-
ses from more common hydrocarbon
feedstocks in 1998.8�10 The SWNT yields
and production rates, however, remained
rather low (with the exception of the HiPco
process).11

An important breakthrough came in 2004,
when Hata et al. reported water-assisted
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ABSTRACT Applications of carbon nanotubes continue to advance, with substantial progress in

nanotube electronics, conductive wires, and transparent conductors to name a few. However, wider

application remains impeded by a lack of control over production of nanotubes with the desired purity,

perfection, chirality, and number of walls. This is partly due to the fact that growth experiments are time-

consuming, taking about 1 day per run, thus making it challenging to adequately explore the many

parameters involved in growth. We endeavored to speed up the research process by automating CVD

growth experimentation. The adaptive rapid experimentation and in situ spectroscopy CVD system

described in this contribution conducts over 100 experiments in a single day, with automated control and

in situ Raman characterization. Linear regression modeling was used to map regions of selectivity toward

single-wall and multiwall carbon nanotube growth in the complex parameter space of the water-assisted CVD synthesis. This development of the

automated rapid serial experimentation is a significant progress toward an autonomous closed-loop learning system: a Robot Scientist.
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synthesis (“supergrowth”) of SWNTs by ethylene
CVD.12 It was shown that 175 ppm of water vapor in
the CVD feedstock was amagic ingredient that allowed
growing few millimeter high SWNT carpets by greatly
extending the catalyst lifetime, while achieving
exceptionally high growth rates, on the order of
2�10 μm/s.13 Since then, water has been widely used
as a promoter in CNT growth. Selectivity toward SWNTs
(or any other kind of CNT), however, remains proble-
matic. While the first publication demonstrated SWNT
growth,12 double-wall nanotubes (DWNTs) or MWNTs
were also present. Selectivity toward DWNTs was de-
monstrated soon,14�16 with small quantities of SWNTs
and MWNTs observed, as well as selectivity toward
MWNTs.17 A number of publications explain strategies
for wall selectivity. The nanotube diameter and aver-
age number of walls were shown to be proportional to
the catalyst thickness (and therefore catalyst particle
size).15,16,18�20 Even with a fixed catalyst thickness,
changes in the temperature21,22 and feedstock pres-
sure21�23 also affect the number of walls nucleated. All
of these publications have shown that a typical product
is still a mixture of nanotube types with varying ratios of
SWNTs, DWNTs, and MWNTs;that is, not selective.
Puretzky et al.21,22 provided an interesting insight

into the mechanism that determines the number of
CNTwalls (hereafter referred to as the Puretzkymodel):
The authors argue that the number of CNT walls is
determined by the interplay between the incident
carbon flux and the ability of a single growing cylinder
(SWNT) to accept incoming C atoms. They postulate
that when the carbon supply outpaces the rate at
which carbon atoms can be added to a SWNT, an addi-
tional wall is nucleated. For a given flux, SWNTs will
grow at elevated temperature due to faster carbon
atom addition kinetics, but MWNTs will grow at lower
temperature due to the inability of a SWNT to accom-
modate the incoming flux of carbon atoms. The cross-
over temperature is defined as the temperature at
which growth transitions from SWNTs to MWNTs. In-
creasing the partial pressure of the hydrocarbon leads
to an increase in the incoming carbon flux and shifts
SWNT/MWNT crossover temperature higher, which is
consistent with later observations.23 We note that the
Puretzky model is deterministic in nature; that is, it
predicts the number of CNTwalls but does not account
for typically observed stochastic CNT-type mixtures.
The diversity of CNT types within an individual experi-
ment strongly suggests that nanotube nucleation is
probabilistic in nature; that is, there are certain prob-
abilities of nucleating SWNTs or MWNTs at a given CVD
condition, and thus selectivity toward certain product
is achieved by maximizing the respective probability,
while minimizing other ones.
The adaptive rapid experimentation and in situ spec-

troscopy (ARES) system continues to be developed by
us in our effort to more effectively explore and

understand nanotube growth. Previously, we demon-
strated the value of in situ spectroscopy by tracking the
growth rate of a carbon nanotube and showing that
the growth rate increased with chiral angle.24 We also
showed that the lifetime of a catalyst and the nuclea-
tion success rate correlated to the liquid or solid state
of the catalyst.25 Due to the stochastic nature of
nanotube growth, this phenomenon only became
clear because of the large number (>100) of experi-
ments enabled by ARES. In our current effort, we begin
to address the problem of the large parameter space of
input conditions for CVD growth. Input parameters for
a CVD growth experiment include the following: tem-
perature, pressure, choice of hydrocarbon, concentra-
tions and flow rates of hydrogen, water vapor, inert
gases, and carbon source; choice of catalyst, catalyst
support, catalyst promoters, calcination conditions,
and reduction conditions are all important. Addition-
ally, the range of many parameters is large: growth
temperature can vary from 400 to 1500 �C and pres-
sures from 10�5 to tens of atmospheres (>6 orders
of magnitude). There is also a large number of pure
elemental catalysts26 and perhaps an exponentially
large number of choices when binary, ternary, and
more complex catalysts are considered.
Facing such an overwhelming number of potential

growth conditions to explore, it is imperative that the
rate of experimentation be increased via automation.
Previous work in automated experimentation includes
workstation for automated nanomaterial discovery
and analysis (WANDA),27 developed for automated
nanocrystal synthesis. WANDA's liquid-handling ro-
botics inject precursor chemicals into an array of
reactors, followed by rapid screening of the structural
and optical properties of resulting nanocrystals, also
using automated methods. Automation of the synthe-
sis and analysis allows WANDA to optimize the size,
crystal structure, and luminescence properties of nano-
crystals. Another example is Adam,28,29 designed to
study functional yeast genomics. Three robotic arms
combine planned yeast strains, metabolites, and
growthmedium, followed by automatic optical density
measurements that act as a proxy for cellular growth.
Biologically significant parameters were extracted
from the optical data and statistically analyzed to
update the model of yeast metabolism. Adam was
successfully used to identify genes responsible for
catalyzing specific reactions in themetabolic pathways
of the yeast Saccharomyces cerevisiae28 and for the
rapid screening of antiparasitic drugs.30 An excellent
review29 makes it clear that, at present, experimental
systems stemming from life sciences are considered
most amenable to automation of experimentation. For
carbon nanotube synthesis, there are a number of
reports utilizing combinatorial approaches to study
catalyst libraries for CNT growth.31�33 This kind of
massively parallel approach has a certain limitation:
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while catalyst composition is varied, the CVD growth
conditions are the same across the library, and the
analysis remains unautomated, is labor-intensive, and
is still mostly done in a serial fashion.
The only example of high-throughput CNT synthesis

is from Hart et al.,46 who demonstrated automated
synthesis using Robofurnace. Their work elucidated
the variability in experimental outcomes despite ef-
forts to precisely control growth conditions. They used
in situ video capture to monitor CNT forest height
during growth; however, they did not capture informa-
tion on the CNT type.
Our ARES system was developed with the target

milestone of increasing the rate of experimentation by
100-fold, to 100 runs per day, with results analyzed
in situ and in real time via Raman spectroscopy. We
have achieved this goal. Additionally, the system is
now capable of running a 25-experiment series in fully
automatic mode, with preprogrammed growth recipes
and without user intervention, as opposed to pre-
viously published results24,25 when each experiment
was done in an essentially manual fashion. This ap-
proach is distinct from combinatorial approachesmen-
tioned above because the experiments are done in
rapid serial fashion, rather than parallel, and thus the
growth recipe can be varied for each experiment.

RESULTS

Below we discuss the selectivity of the water-
assisted CVD toward SWNT or MWNT nucleation. The
CNT growth kinetics determined from the time depen-
dence of the G- and D-band intensity will be the
subject of a follow-up article.
A data set of 534 growth experiments was produced

for this article. The temperature was varied from 400 to
1100 �C, pressure from 4 to 40 Torr, and water con-
centration from 4 to 280 ppm. The type of nanotube
(i.e., single-wall or multiwall) was determined from
characteristic features of the Raman G- and D-bands.
Typical nanotube spectra are shown in Figure 1. SWNT
spectra (Figure 1a) are characterized by a narrow
G-band and almost absent D-band. MWNT spectra
(Figure 1b) are characterized by broad D- and G-bands
of about equal intensity. Often both MWNT and SWNT
growth is detected (referred to as “mixed growth”),
with spectra being essentially a superposition of
MWNT and SWNT features, that is, a narrow SWNT
G-band atop a broad MWNT G-band (Figure 1c). These
spectral characteristics were used to assign binary
growth type identifiers:

[10] ¼ SWNT
[01] ¼ MWNT
[11] ¼ SWNT and MWNT
[00] ¼ no growth

The results of 129 experiments were additionally
characterized by SEM imaging and ex situ Raman

spectroscopy in a commercial spectrometer to confirm
the in situ identification, and seven of those (5.4%) had
to be corrected. Misidentification was caused by lower
signal-to-noise ratio of the in situ spectra when nano-
tube growth was weak, and the better light collection
efficiency and longer exposures afforded in the com-
mercial Raman system provided more reliable identi-
fication in these cases. An example of a correct in situ

identification confirmed by ex situ analysis is shown in
Figure 2. An example of the incorrect in situ identifica-
tion that had to be corrected after ex situ analysis is
shown in Figure 3.
The results were analyzed using logical regression.35

Logical regression is a technique developed to analyze
correlations within data sets containing a mix of con-
tinuous and discrete variables. This is appropriate
because experimental outcome of single-wall or multi-
wall growth is discrete, whereas experimental inputs
(e.g., temperature or pressure) are continuous. The
probabilities of growing SWNTs (χSWNT) and MWNTs
(χMWNT) were assumed to be independent in order
to allow for mixed growth; therefore, two separate
models were constructed for χSWNT and χMWNT.
The predictor variable matrix was constructed from

Figure 1. Examples of Raman spectra obtained in situ on
SWNT (a), MWNT (b), and SWNTþMWNT (c) (mixed growth).
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experimental inputs: partial pressures of the constitu-
ent gases P(C2H4, Torr) and P(H2, Torr), water con-
centration (ppm), and temperature T (�C) for each
experiment (eqs 2 and 3). The response vector pSWNT

for the SWNT model comprised a binomial variable
which was set to 1 when either SWNT or mixed growth
was detected ([10] or [11]) and 0 when no SWNT was
detected ([01] or [00]) (eq 2). Likewise, the binomial
response vector pMWNT for the MWNTmodel was set to
1 when either MWNT or mixed growth was detected
([01] or [11]) and 0 when no MWNT was detected ([10]
or [00]) (eq 3). Therefore, the firstmodel output was the
probability of growing the SWNT, χSWNT, regardless of
whether aMWNTgrewor did not grow, and the second
model output was χMWNT. The 129 experiments that
were additionally analyzed ex situ by SEM/Raman were
weighed two times higher than the rest of the experi-
ments. It has to be noted that the terms and coeffi-
cients of the resulting polynomials do not themselves
bear physical meaning, being simply a result of map-
ping of probabilities using second degree polynomials.
The resulting dependencies, however, express correla-
tions between the input parameters and the probabil-
ity of the outcomes.
Visualization of the output of regression models

presents certain difficulties since the parameter space
is four-dimensional. Two-dimensional slices through
the four-dimensional parameter space of the SWNT
and MWNTmodels are shown in Figure 4. Probabilities

of nucleating SWNTs (Figure 4a) andMWNTs (Figure 4b)
are plotted with respect to the temperature and C2H4

partial pressure, with other inputs fixed at typical aver-
age values: P(H2) = 12 Torr and H2O = 50 ppm. It can be
seen that χSWNT has a well expressed maximum at low
C2H4 partial pressures, in the∼700�900 �C temperature
range. χMWNT, on the other hand, is maximized in the
upper range of the C2H4 partial pressure and at
T <∼ 600 �C. These results agree well with our observa-
tions:MWNTs tend to grow at high C2H4 partial pressure
and low temperature, and SWNTs tend to grow at high
temperature and low C2H4 pressure.
The results presented in Figure 4 are the outputs of

the regression model. For a comparison to the experi-
mental results, see Supporting Information Figure S2.
Figure 4 shows the probability of growing either CNT

type regardless of whether another CNT type grows, as
well. Selective growth of SWNTs or MWNTs, however,
should be defined as the region in the parameter space
where the probability of nucleating either CNT type is
maximized, whereas another CNT type is minimized;
that is, the binary growth type identifiers are [10] and
[01] for the selective SWNT and MWNT nucleation. The
respective probabilities, χSWNT ONLY and χMWNT ONLY

are plotted in Figure 5a,b, respectively. It can be seen
that the region of selectivity toward SWNTs is located

Figure 2. Example of correct in situ identification. In situ and
ex situRaman spectra (a) and SEM image (b) showing several
SWNTs. The experiment was identified as [10] (SWNT only).

Figure 3. Example of corrected in situ identification. The
experiment was misidentified as [01] (MWNT only) based
on noisy in situ spectrum (a) and corrected to [11]
(SWNTþMWNT) based on ex situ spectrum (a) and SEM
imaging (b) showing both SWNTs and MWNTs present on
the pillar.
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at T =∼975 �C and P(C2H4) = 5 Torr, while the region of
selectivity toward MWNTs is in a broader region where
T < ∼600 �C and P(C2H4) > ∼8 Torr (with other inputs
fixed at typical average values: P(H2) = 12 Torr and H2O
= 50 ppm). Because themaxima are extrapolations just
beyond the range of experimental data (Figure S2),
they should be viewed as general regions of interest
rather than precise values. It is also important to
note that the probability of growing either SWNTs or
MWNTs is never zero in the regions where probability
of growing MWNTs or SWNTs is maximized. Therefore,
a “perfect” selectivity does not exist: the typical pro-
duct is a mixture of CNT types, in agreement with the
results observed in the literature.12,14�16,18�20 It should
be possible, however, to maximize the SWNT or MWNT
fraction to a rather high extent.
The observed tendency of SWNTs to grow at low

C2H4 partial pressure and high temperature, and
MWNTs at high C2H4 pressure and low temperature,
is in a good agreement with the Puretzky model,22 in
which an increase in the hydrocarbon partial pressure
shifts the SWNT/MWNT crossover temperature up.
The probabilities of nucleating SWNTs and MWNTs
with respect to temperature for two values of C2H4

partial pressure are plotted in Figure 6. For any given

temperature, increase in the hydrocarbon pressure
leads to lower χSWNT and higher χMWNT, which shifts
overall SWNT/MWNT balance toward MWNTs. Simi-
larly, for any given hydrocarbon pressure, an increase
in the temperature leads to higher χSWNT and lower

Figure 4. Probabilities of nucleating SWNTs (a) andMWNTs
(b) with respect to temperature and C2H4 partial pressure,
with other inputs fixed at typical average values: P(H2) =
12 Torr and H2O = 50 ppm.

Figure 5. Probabilities of selective nucleation of SWNTs (a)
and MWNTs (b) with respect to temperature and C2H4

partial pressure, with other inputs fixed at typical average
values: P(H2) = 12 Torr and H2O = 50 ppm.

Figure 6. Probabilities of nucleating SWNTs and MWNTs
with respect to temperature for 6 and 10 Torr C2H4 partial
pressure, with other inputs fixed at typical average values:
P(H2) = 12 Torr and H2O = 50 ppm. Crossover temperatures
(above which χSWNT > χMWNT) are marked with a red circle
(TC1, 6 Torr) and blue circle (TC2, 10 Torr). TC dependence on
the C2H4 partial pressure is shown in the inset.
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χMWNT, shifting the SWNT/MWNT balance toward the
SWNT. Since regression analysis is probabilistic, we
can redefine the crossover temperature TC as the one
where χSWNT = χMWNT, that is, χSWNT > χMWNT when
T > TC. Crossover temperatures are marked in Figure 6
with a red circle (6 Torr C2H4) and blue circle (10 Torr
C2H4), and TC dependence on the C2H4 partial pressure
is shown in the inset. It can be seen that an increase in
the hydrocarbon pressure shifts TC up, according to the
upward trend discussed above.
This brings us to the role of water in the “super-

growth”. It has been accepted that a small amount of
water in the CVD reactor acts as a weak oxidizer and
selectively removes amorphous carbon without dama-
ging the growing CNTs.12 A different, although not
mutually exclusive, idea of the role of water also
emerged:36,37 that water creates �OH groups on the
alumina catalyst support, thus impeding catalyst par-
ticle mass loss via Ostwald ripening, which otherwise
leads to the disappearance of small particles necessary
to support SWNT growth. This idea is supported by
earlier observations38 that very fast heating maximizes
CNT growth, which in retrospectmay be due tomost of
the growth occurring before Ostwald ripening takes
place. There also is some agreement that too much
water leads to growth suppression via catalyst oxi-
dation13,39 and damage to nanotubes.20

Probabilities of nucleating SWNTs and MWNTs with
respect to temperature and H2O concentration with
other inputs fixed at typical average values, P(H2) =
12 Torr and P(C2H4) = 8 Torr, are shown in Figure 7. For a
comparison to the experimental results, see Support-
ing Information Figure S3. It can be seen that χSWNT is
maximized in the 700�900 �C temperature range and
above∼100 ppm of H2O concentration. χMWNT, on the
other hand, is maximized at T < ∼600 �C and H2O
concentration less than ∼100 ppm. χSWNT increases as
thewater concentration goes up anddoes not exhibit a
maximum below 280 ppm of H2O, the upper range of
the water concentration in the experimental set. This
result is in good agreement with the idea that water
prevents loss of small catalyst particles via Ostwald
ripening.36,37 Indeed, it appears that MWNTs nucleate
preferentially below ∼100 ppm concentration, while
SWNT nucleation is suppressed, indicating that there's
not enough water to prevent Ostwald ripening. On
the other hand, SWNTs nucleate preferentially above
∼100 ppm, indicating that there is enough water to
prevent Ostwald ripening, and small particles remain
small and promote SWNT nucleation. This argument
assumes that nanotube diameter is commensurate
with the catalyst particle size.15,16,18�20

The influence of the water content on the type of
CNT can be seen further in Figure 8, which shows TC
dependence on the C2H4 partial pressure for several
water concentrations. An increase in the water con-
centration at the same C2H4 partial pressure shifts the

crossover temperature down; that is, the probability of
nucleating the SWNT goes up. Therefore, an increase in
the H2O concentration has the same effect on the
SWNT/MWNT balance as does a decrease in the hydro-
carbon pressure. This observation points toward the
water role in the CVD chemistry: it reacts with the
carbon precipitating on the catalyst particle and re-
moves it in the form of volatile oxides (CO, CO2),
effectively reducing the incoming carbon flux.12

Figure 7. Probability of nucleating SWNTs (a) and MWNTs
(b) with respect to temperature and H2O concentration,
with other inputs fixed at typical average values: P(H2) =
12 Torr and P(C2H4) = 8 Torr.

Figure 8. Crossover temperatureTC dependenceon theC2H4

partial pressure for several values of H2O concentration.
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CONCLUSIONS

We were able to map regions of selectivity toward
SWNT and MWNT nucleation and growth in four-
dimensional parameter space of the water-assisted
CVD synthesis using a statistical linear regression anal-
ysis of 534 growth experiments, analyzed by Raman
spectroscopy, mostly in situ. This is the first demonstra-
tion of automated experimentation combined with
regression analysis applied to understanding CNT
synthesis. We built the ARES system to address the
problem of an overwhelmingly large experimental
parameter space, as well as the slow experimentation
rate and statistical variability in experimental out-
comes. We found that the large quantity of experi-
mental results enabled by automation were best
treated using logical regression.
The results of the regression analysis are in a good

agreement with the Puretzky model22 in terms of the
shift of the SWNT/MWNT boundary with respect to
temperature and hydrocarbon pressure. The role of the
water agrees with its effect on the size of catalyst
particles via Ostwald ripening36,37 and with its ability
to “mop up” extra carbon from the catalyst.12 The
predictive power of the regression analysis is further
emphasized using examples presented in Figures 2
and 3: probabilities of SWNT andMWNT nucleation are
χSWNT = 0.98 and χMWNT = 0.07 in the SWNT case
(Figure 2) and χSWNT = 0.99 and χMWNT = 0.81 in the
case of mixed growth (Figure 3); that is, the prediction
is in excellent agreement with the experiment.
An additional benefit of the regression analysis is

that it can be done on a limited number of experi-
mental results and can then guide future experi-
mentation, helping to define regions of interest in the

four-dimensional parameter space. An attempt to cov-
er the parameter space with experiments uniformly is
intractable: for example, a grid of only 10 values of each
parameter yields 104 experiments, which is prohibitive
even for ARES. In this particular set of experiments,
early analysis helped to direct our efforts toward higher
water concentrations, where SWNTs nucleate prefer-
entially, and to experiment with higher fidelity in the
regions where χSWNT and χMWNT are maximized: high
temperature/low hydrocarbon pressure and low tem-
perature/high hydrocarbon pressure, respectively. The
regression analysis presented here was done manually
and off-line. When similar analysis is done after each
experiment, automatically and in real time, it could
guide the design of subsequent experiments, closing
the experimentation loop. This approach will let the
machine design and execute its own experiments
based on a certain goal such as selectivity, growth
rate, etc.
Regression analysis is only one of many tools being

developed and deployed on ARES to close the experi-
mental loop. These include the use of other statistical
approaches, computational optimization, and artificial
intelligence-based solutions, to include neural net-
works, support vector machine,40 random forests,41

genetic algorithms, and optimal learning with knowl-
edge gradient approach.42 Advantages of these tech-
niques are an ability to determine complex relation-
ships between many input parameters to provide a
robust consensus view43 of nanotube growth and
determine input parameters with the largest effect
on results. This contribution is a major milestone in
the larger effort to accelerate materials discovery
through the autonomous experimentation.

EXPERIMENTAL SECTION
The ARES instrument diagram is shown in Figure S1, Support-

ing Information. CNTs are grown in a cold-wall CVD chamber
installed on a three-axis motion stage above an inverted Raman
microscope (Nikon Ti-E). The growth substrate consists of 5� 5
arrays of silicon pillars spaced 50 μm apart on a SiO2 sublayer,
10μmtall and 10μmdiameter (Figure S1 inset). Pillars are coated
with 10 nm ALD alumina support layer and 1 nmNi catalyst film
deposited by ion beam sputtering. Each pillar constitutes
essentially an independently addressable microreactor, which
is heated by a 532 nm laser beam that doubles as a Raman
excitation source through a 50� extra-long working distance
objective lens. Raman spectra are collected from a ∼5 μm size
spot illuminated by the excitation laser. The small thermal mass
of the pillar combined with low thermal conductivity of the SiO2

sublayer enables heating to reaction temperatures within a
fraction of a second when laser power is varied in the 0�1.5 W
range. CVD chamber pressure is measured by a capacitance
pressure gauge (MKS) and regulated by a throttle valve (MKS)
exhausting into a vacuum pump. H2, C2H4, and Ar feedstock
gases are metered into the CVD chamber in varying ratios via
mass flow controllers (MKS). Water vapor is bled into the
chamber through a manual leak valve, and its concentration is
measured by a dew point sensor (Shaw). The temperature-
induced shift of the Si Stokes and anti-Stokes Raman bands

((520 cm�1) is used to calculate the growth temperature
according to eq 1:

Δω(T) ¼ C 1þ 2
pω0

e2kBT � 1

2
664

3
775þD 1þ 3

pω0

e3kBT � 1

þ 3

pω0

e3kBT � 1

� �2

2
66664

3
77775

(1)

Here kB is Boltzmann's constant, p is Planck's constant, and ω0,
C, and D are constants with the values 528, �2.96, and
�0.174 cm�1, respectively.34 The accuracy of the temperature
measurement is estimated to be within ∼10�15 �C.
The x-y-z stage, mass flow controllers, pressure controller,

microscope, laser, and spectrometer are all simultaneously
controlled by custom software developed for 64-bit Windows
7 in C#/.Net 4.0 using Windows Visual Studio 2010. Abstraction
and object-oriented programming are incorporated into the
software design in order to take advantage of concurrencies
in the hardware. In a series of experiments, the first pillar is
positioned under the laser. The laser power is increased to a
preset value in less than a second, and Raman spectra are
acquired in 5 s intervals, with each spectrum processed in real
time to obtain temperature (from Si bands shifts) and CNT
G- and D-band areas. Nanotube nucleation and growth are
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detected by the appearance and increase in intensity of G- and
D-bands seen at ∼1590 and ∼1350 cm�1. Upon experiment
completion (300 s typical time), the next pillar is moved under
the laser and the experimental cycle is repeated with a new
growth recipe. This way, up to 25 experiments can be done in a
fully automatic mode without human intervention.
Additional ex situ Raman characterization was done in

Renishaw InVia Raman system with 532 nm excitation. The light
collection efficiency and resolution in the commercial Raman
system are notably better compared to that in the ARES
spectrometer, in addition to much longer exposures afforded.
This way, ex situ characterization helped to obtain Raman
spectra with better signal-to-noise ratio. Electron microscopy
characterization was done in FEI Sirion SEM equippedwith field-
emission gun, at 3�5 keV acceleration voltage to reduce
charging.
Some experiments result in the growth of just one CNT, while

others result in dozens of nanotubes scattered on the pillar
surface, as seen in SEM images.
Logical regression analysis utilized Matlab R2012b statistics

toolbox function “GeneralizedLinearModel.stepwise”. The pre-
dictor variable matrix is constructed with C2H4 partial pressure,
H2 partial pressure, H2O concentration, and temperature of each
experiment. Two separate binomial response vectors, pSWNT and
pMWNT, are constructed for SWNT and MWNT models: the first
contains 1 when the experiment resulted in SWNT growth and 0
for outcomes with no SWNT (eq 2); the second contains 1 when
the experiment resulted in MWNT growth and 0 for outcomes
with no MWNT (eq 3). The outputs of the models are probabil-
ities of the response, χSWNT and χMWNT, respectively, shown in
eqs 2 and 3 for four actual experiments.

The predictor distribution is assumed normal and the re-
sponse distribution binomial, with default logit link function.35

Similar approaches are found in the literature when logical
regression analysis is applied to the outcomes of medical trials,
where discrete predictor variables might include gender,45

race,45 appearance of pain,44 ulcer classification44 and discrete
responses might be healing,44 appearance of certain symp-
toms,45 etc.
The method begins with an initial model that includes all

available predictor variables and their interactions; that is all
linear and quadratic terms. Then at each step the method
searches for terms to add or eliminate by comparing models
with and without a potential term based on the p-value.
The p-value is the probability of obtaining a test statistic result
close to the one actually observed assuming that the null
hypothesis is true.35 The term is removed from the model if it
fails statistical significance test, that is, p > 0.05,35 and added or
retained if significant. The sequence terminates when no single
step improves the model.
All terms containing argon partial pressure and total pressure

in the growth chamber were consistently eliminated as statis-
tically insignificant, while terms containing temperature, water
concentration, partial pressures of ethylene and hydrogen, and
interactions thereof were found to be significant.
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